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Abstract—We consider the problem of learning probabilistic
models from relational data. One of the key issues with relational
data is class imbalance where the number of negative examples
far outnumbers the number of positive examples. The common
approach for dealing with this problem is the use of sub-sampling
of negative examples. We, on the other hand, consider a soft
margin approach that explicitly trades off between the false
positives and false negatives. We apply this approach to the
recently successful formalism of relational functional gradient
boosting. Specifically, we modify the objective function of the
learning problem to explicitly include the trade-off between false
positives and negatives. We show empirically that this approach
is more successful in handling the class imbalance problem than
the original framework that weighed all the examples equally.

I. INTRODUCTION

Recently, a great deal of progress has been made in
combining statistical methods with relational or logical models,
in what is now known as Statistical relational Learning
(SRL) [1]. SRL addresses the challenge of applying statistical
learning and inference approaches to problems which involve
rich collections of objects linked together in a complex,
stochastic and relational world. The advantage of SRL models
is that they can succinctly represent probabilistic dependencies
among the attributes of different related objects, leading to a
compact representation of learned models. While these models
are highly attractive due to their compactness and compre-
hensibility, the problem of learning them is computationally
intensive. As with standard graphical models, most of the SRL
models have two components: structures (rules) that capture
the influences between attributes and parameters (weights or
probability distributions) that model uncertainty. Consequently,
structure learning problem in SRL is also significantly difficult.

Consequently, structure learning has received increased
attention lately, particularly in the case of one type of SRL
models called Markov Logic Networks [2], [3]. These ap-
proaches provide solutions that are theoretically interesting;
however, applicability to real, large applications is nominal
due to restricting assumptions in the models and complex
search procedures inside the methods. A more recent algorithm
called Relational Functional Gradient Boosting (RFGB) [4],
[5], based on Friedman’s functional gradient boosting [6]

addressed this problem by learning structure and parameters
simultaneously. This was achieved by learning a set of rela-
tional trees for modelling the distribution of each (first-order)
variable given all the other variables. The key insight is to
view the problem of learning relational probabilistic functions
as a sequence of relational regression problems, an approach
that was successful in the standard propositional data cases. In
turn, it is natural to expect that problems and solutions well
known for propositional classification/regression problems can
be studied for and transferred to SRL settings. Interestingly,
this has not been fully considered so far.

Specifically, imbalanced class distributions have remained
as a significant bottleneck to the performance attainable by
most standard propositional algorithms. In this paper, we show
that this problem is especially prevalent in learning SRL
models. This is because, in relational settings, a vast majority
of relations between objects are not true, and the number
of negative examples far outnumbers the number of positive
examples. For instance, consider the relation Friends(x,y).
If x and y can both take 1000 different values, this re-
lation can have 1M different grounded facts with different
configurations of x and y. However, in the data base, only
less than 50k relations could possibly be true since in real
world, most of Friend relationships are not true between
people. And such imbalance increases as the number of objects
in the relations increases. This problem is a critical one in
all SRL domains involve relations between people, such as
co-worker, advised-by, co-authors, etc. The way
Probabilistic Relational Models [7] bypasses this problem
is by creating a binary existence variable for every possible
relation, but this introduces a similar class imbalance problem
while learning the existence variables because this binary
relation will be false for all but a very few number of relations.

The approach employed by more successful SRL algo-
rithms such as RFGB is to sub-sample a set of negatives,
and use this subset for training. While effective, this method
can lead to a large variance in the resulting probabilistic
model. An alternative method typically is to oversample the
minority class but as observed by Chawla [8], this can lead
to overfitting on the minority class. This is particularly true
for incremental model-building algorithms such as RFGB,



which iteratively attempt to fix the mistakes made in earlier
learning iterations. In the propositional domains, this problem
is typically addressed by operating and sampling in the feature
space [8]. However, in relational domains, the feature vector
is not of a fixed length and the feature space can possibly be
infinite [9]. Previous work has shown that random sampling
of features will not suffice in relational domains [10].

One solution to address the issue of imbalance leading
to overfitting in the propositional world is to perform some
form of margin maximization. A common approach to margin
maximization is via regularization, typically achieved via a reg-
ularization function [11]–[13]. In propositional and relational
functional-gradient boosting methods, common regularization
approaches restrict number of iterations, tree size or number of
trees learned. While reasonably successful, algorithm behavior
is sensitive to parameter selection, and requires additional steps
such as cross validation to achieve optimal model tuning.
Instead, we explore the use of cost-based soft-margin max-
imization, where a carefully designed cost function relaxes
the hard margin imposed by maximum log-likelihood by
penalizing certain misclassified examples differently.

Based on the observation that the current RFGB method
simply optimizes the log-likelihood by considering the under-
lying model to be a (structured) log-linear model, we introduce
a soft-margin objective function that is inspired by earlier
research in log-linear models [14], [15]. The objective is very
simple: high-cost examples should be penalized differently
from low-cost examples. In our setting, false negatives con-
stitute high-cost examples. This is especially motivated by
applications in medical domains (for instance, predicting heart
attacks), where it is imperative that any modeling approach
reduces the number of false negatives (failed to predict cardiac
event with adverse consequences and high cost), even if it
comes at the expense of adding a few more false positives (pre-
dicted a cardiac event that did not happen, moderate cost). The
low-cost examples, for this application, would be false positive
examples. Our cost function addresses this class imbalance,
essentially by placing weights on the false negative and false
positive cases. Thus, we propose a soft-margin function, or
more specifically, a cost-augmented scoring function that treats
positive and negative examples differently.

In this paper we address the imbalance problem in rela-
tional data by introducing a soft-margin-based objective func-
tion. Then, we derive gradients for this soft margin objective
function to learn conditional distributions. We also show the
relation between the soft margin and the current RFGB algo-
rithm. Since the original RFGB algorithm has been extended
to learn several types of directed and undirected models [4],
[5], [16], our algorithm is broadly applicable and not restricted
to a particular class of SRL model. Finally, we evaluate
the algorithm on several standard data sets and demonstrate
empirically that the proposed framework outperforms standard
RFGB in addressing the problem of class imbalance.

II. BACKGROUND AND RELATED WORK

A. Soft Margin Learning for Unbalanced Datasets

Soft margin approaches are a popular approach for un-
balanced datasets [17], [18]. Conceptually, our approach is
closest to the softmax-margin approach for log-linear models

[14] where the objective function is a modified log-likelihood
function with a cost function in the normalization term that
assigns different weights to different error types (false positives
vs false negatives). However, they have not yet been applied
to SRL models, which require non-trivial modifications.

Cost-sensitive learning for relational models has been con-
sidered by Sen and Getoor [19] where they learn the parame-
ters of a conditional Markov network using two cost-sensitive
approaches: one based on the expected cost of misclassification
and the second based on introducing a cost in the maximum
entropy formulation. Our approach learns structure as well as
parameters of relational conditional distributions.

B. Relational Functional Gradient Boosting

Friedman [20] proposed a boosting approach where func-
tional gradients are computed for each example over the ob-
jective function. These gradients correspond to the difference
between the true label and predicted probability of an example
and are used to generate a regression dataset. In each iteration,
a regression function is learned to fit to these gradients and
added into the model to improve the probabilistic predictions.
Unlike AdaBoost, this functional gradient boosting (FGB)
approach learns a probabilistic classifier.

In the relational setting, the functional gradient method has
been shown to be successful in learning structure for multiple
relational models [4], [5], [16]. Natarajan et al. [4] introduce
Relational Functional Gradient Boosting (RFGB) to learn a
Relational Dependency Network (RDN) as a set of relational
conditional distributions. RFGB represents a probability dis-
tribution as a sigmoid over a regression function ψ:

P (x|parents(x)) =
expψ(x; parents(x)))

1 + expψ(x; parents(x)))
. (1)

It then calculates the regression values for each grounding
of the target predicate by computing the functional gradient
of the pseudo-loglikelihood objective function. The gradient
( ∂

∑
i logP (xi)

∂ψ(xi;parents(xi))
) for an example xi is given by

∆(xi) = I(xi = true)− P (xi|parents(xi)), (2)

where I is an indicator that returns 1 for positive, and 0 for
negative examples. The key insight is that the gradients are
not summed over all the examples, but instead, are computed
for each example. This gradient becomes a weight for that
example (∆(xi)). In SRL case, this corresponds to computing
the gradient (weight) for every grounding. Then, a relational
regression tree [21] is learned to fit to these weighted ground-
ings, which is then added to the model. Similar to parametric
descent, the sum of these m gradients is the current value of
the regression function ψ.

Note that when given an example and the value of all the
other groundings in the database, only one path in a tree is
satisfied. Then the regression value from the leaf of that path is
taken as the gradient and added to the overall gradient. Hence,
these different trees can then be summed to obtain the ψ value
of the current grounding given its parents. This approach is
known as Relational Functional Gradient Boosting (RFGB).
This is an iterative procedure where at each step, the gradients
are computed for each example and a (relational) tree is learned
over all the examples. Then this tree is added to the current



set of trees and the procedure continues till convergence (or
when a preset number of trees is learned). But this approach
uses a constant cost for type I (false positive) and type II (false
negative) errors and can still overfit as more trees are included.

C. Other ensemble methods

AdaBoost [22], the most popular ensemble method, learns a
sequence of weak classifiers by reweighting the example after
every iteration and has been shown to outperform a single
complex model. But boosting often suffers from overfitting
after a few iterations [23]. Hastie et al. [12] proposed ε-Boost
where they regularize by shrinking the contribution of each
weak classifier. Jin et al., [24] proposed Weight-Boost, that
combines weak classifier with an instance-dependent weight
factor. They trade-off between the weak classifier in the current
iteration and the classifier based on the previous iterations.
Xi et al., [25] minimize a L1-regularized exponential loss
for sparse solutions and early stopping. Rätsch et al., [26]
proposed a weight-decay method, where they soften the margin
by introducing a slack variable in the exponential loss function.
In contrast to our approach, these approaches were applied to
propositional non-probabilistic classifiers.

III. SOFT-RFGB

As discussed previously, equation(2) indicates that when
a positive (or negative) example is predicted to be true with
probability 0 (or 1), the gradient will be 1 (or −1). This
gradient ensures that the probability (via the likelihood) of all
positive examples is pushed towards 1, and all the negative
examples towards 0. While this appears to be reasonable,
closer inspection illustrates two key problems with RFGB.
First, as we learn more trees, weights are concentrated on
outliers, which leads to over-fitting. In each iteration, outliers
are misclassified and will have larger gradients; this leads to
the algorithm focusing on them in the subsequent iteration
resulting in a more complicated model (overfitting). To avoid
this, regularization strategies such as limiting the number of
trees or tree size are usually implemented. While this is usually
effective, this requires careful tuning of parameters.

Second, RFGB treats both positive and negative examples
equally. This is evident from the fact that the magnitude of the
gradient does not depend on the label. For skewed data sets,
we may want to assign higher weights to a particular example
class. For instance, as the number of positive examples is very
low, we might wish to assign higher weights to them to reduce
false negatives. To alleviate this issue, RFGB currently sub-
samples a smaller subset of negative examples while training.
Again, while this is reasonable, the resulting model usually has
high variance due to these varying sets of negative examples.

On the other hand, a cost-sensitive approach allows us to
address these issues and model the target task more faithfully.
This is achieved by adding a cost term that penalizes examples
differently. Thus, in addition to simple log-likelihood of the ex-
amples, the algorithm also takes into account these additional
costs in order to account for the class imbalance. Following the
work of Gimpel and Smith [14], we introduce a cost function
into the objective, denoted c(ŷi, y), where ŷi is the true label
of ith instance and y is the predicted label. The new objective

is called Soft-RFGB and is defined as:

log J =
∑
i

ψ(yi; Xi)− log
∑
y′i

exp {ψ(y′i; Xi) + c(ŷi, y
′
i)} ,

where yi corresponds to a target grounding (a ground instance
of the target predicate) of example i with parents Xi. If the cost
function is independent of the underlying potential function
ψ(yi; Xi) to be estimated, the gradient is

∂ log J

∂ψ(yi = 1; Xi)
= I(yi = 1; Xi)−

P (y = 1; Xi)ec(yi,y=1)∑
y′i

[P (y′i; Xi)ec(yi,y
′
i)]
.

We now define the cost function as:

c(yi, y) = α I(yi = 1 ∧ y = 0) + βI(yi = 0 ∧ y = 1),

where I(yi = 1 ∧ y = 0) is 1 for false negatives and I(yi =
0 ∧ y = 1) is 1 for false positives. Intuitively, c(yi, y) = α
when a positive example is misclassified, while c(yi, y) = β
when a negative example is misclassified. Substituting the cost
function in the gradients, we have ∆(yi) =

1− P (yi = 1; xi)
P (y′ = 1; Xi) + P (y′ = 0; Xi) · eα

, if yi = 1,

0− P(yi = 1; xi) · eβ

P (y′ = 1; Xi) · eβ + P (y′ = 0; Xi)
, if yi = 0.

Defining λ = ec(ŷi,y=1) /
∑
y′ [P (y′; Xi) ec(ŷi,y

′)], the gradi-
ents of the objective function can be rewritten compactly as

∆ = I(ŷi = 1) − λP (yi = 1; Xi). (3)

Our approach works as follow: we iterate through M steps
and in each iteration, we generate examples based on the soft-
margin gradients. We learn a relational regression tree to fit the
examples using FITRELREGRESSIONTREE [4] which is added
to the current model. We limit our trees to have maximum L
leaves and greedily pick the best node to expand.

To generate the regression examples (Fig. 1 (a)), we
calculate the probability of the example being true (pi) for each
example. We then calculate the gradients based on a simplifi-
cation of (3). The example and its gradient are added to the
set of regression examples, S. In the cost-sensitive gradients
derived above, the cost parameter λ depends on the parameters
α and β. When α = β = 0, λ = 1 /

∑
y′ [P (y′; Xi)] = 1,

and the original RFGB gradients are recovered; this setting
corresponds to ignoring the cost-sensitive term.

For positive examples, we have λ = (P (y′ = 1; Xi) +
P (y′ = 0; Xi) · eα)−1. As α→∞, which amounts to putting
a large positive weight on the false negatives, λ→ 0 and the
gradients ignore the predicted probability as ∆ → 1. On the
other hand, when α → −∞, λ → 1 /P (yi = 1; Xi) which
means that the gradients are pushed closer to their minimum
value of 0 (∆ → 0). Similarly, for negative examples, we
can show that β → ∞, then the gradient ∆ → −1, and if
β → −∞, then the gradients ∆ → 0. Generally, if α < 0
(β < 0), the algorithm is more tolerant of misclassified positive
(negative) examples. Alternately, if α > 0 (β > 0), the
algorithm penalizes misclassified positive (negative) examples
even more than standard RFGB. Thus, the influence of positive
and negative examples on the final learned distribution can be
directly controlled by tuning the parameters α and β.



Simply put, if correct classification of positive examples
is very important, one can emphasize such importance by
assigning positive values to α. If there are many outliers
with positive labels which could lead to over-fitting, one can
soften the margin by setting α < 0, making the algorithm
more tolerant. The choice of β has a similar effect on the
negative examples. Soft-RFGB allows flexible adjustments to
classification boundaries in various domains by defining the
cost function with two parameters (α and β), which control
the gradients of positives and negatives respectively. Returning
to our recurring example of clinical classification, we wish
to correctly classify as many positives as possible, while at
the same time, avoid over-fitting the negatives. In such cases,
we set α > 0 and β < 0; we explore these settings in our
experiments, which are presented next.

IV. EXPERIMENTS

A. Domains

We use five standard relational learning domains: Cora,
IMDB, Heart Disease, UW and WebKB for empirical evalua-
tion. Table I shows important details of the data sets used.

Domain Target Num of Num of Num of Imb.
Predicate facts pos neg ratio

Cora samebib 6731 30971 21952 0.71:1
IMDB female gender 959 95 173 1.8:1
Heart num 7453 265 655 2.5:1
UW advisedBy 5039 113 54729 484:1
WebKB courseTA 1912 121 71095 588:1

TABLE I: Details of the experimental domains.

B. Evaluation Metrics

Standard evaluation metrics on relational models include
the use of Area Under ROC or PR curves (AUC-ROC or AUC-
PR), F1 score, etc., which measure accuracy with balanced
weight between positive and negative examples. Instead, we
address domains where misclassification of positive instances
(false negatives) costs significantly more than a false alarm
(false positives), e.g., in medical diagnosis, security detection,
etc. In such domains, the model should identify as many
positive cases as possible as long as the precision stays within
a reasonable range. To better serve such a goal, we employ
evaluation metrics that assign higher weights to high recall
regions, that is, the top region in an ROC curve [27].

Specifically this paper uses three such metrics: 1) false
negative rate, 2) F5 measure, and 3) weighted AUC-ROC. By
comparing the metrics it becomes possible to better understand
an algorithm’s performance on different parts of the precision-
recall curve. For instance, if Algorithm A has lower false
negative rate and higher F5 measure, but similar weighted
AUC-ROC to that of Algorithm B, then this suggests that
Algorithm A improves on the false negative rate without
sacrificing overall predictive performance. (Note that false
negative rate and F-measure require a classification threshold,
this choice will be discussed below.) Details of the latter two
metrics will be discussed here.

Our second metric is the F-measure:

Fδ = (1 + δ2)
Precision ·Recall

δ2 · Precision+Recall
, (4)

where δ controls the importance of Precision and Recall [28].
Note that F1 is the harmonic mean of the precision and recall.
As δ → ∞, Fδ → Recall, and Fδ is recall dominated,
while as δ → 0, Fδ → Precision, and Fδ is precision
dominated. (Although F-measures are typically subscripted
with the symbol β, we use δ here to avoid clashing with the
parameters used in the cost function of soft-RFGB.) Our paper
uses the F5 metric to increase the importance of recall over
precision.

The weighted-AUC measure shifts weight from the bottom
regions to the top regions of the ROC curve, in a manner
similar to Weng et al. [27]. The vertical dimension of the ROC
plot is divided into N + 1 horizontal strips, and in the x’th
section we assign the weight:

W (x) =


1− γ, x = 0,

W (x− 1)× γ + (1− γ), 0 < x < N,

W (x−1)×γ+(1−γ)
1−γ , x = N.

(5)

where γ ∈ [0, 1] controls the amount of skewing. Here, x = 0
corresponds to the bottom-most area of the ROC curve and is
assigned weight 1−γ. Then, weights are transferred recursively
for each of the N regions, and γ controls the amount of weight
transferred. The metric used in this paper set N=5 and γ = 0.8.
As an aside, our proposed W (x) contains a correction to [27].
To satisfy the conditions in their work, the bottom region must
have a weight of 1 − γ, and not γ as claimed by [27]. It is
important to note that we did not change the evaluation metric
parameters for different data sets, but rather chose arbitrary
parameters so the metrics focus better on false negatives.

C. Results

We consider four popular relational algorithms: (1) The
state-of-the-art MLN learning algorithm (denoted as MLN) [5];
(2) A single relational probability tree (denoted as No Boost-
ing) [29]; (3) RFGB as presented in earlier research (denoted as
Hard Margin) [4]; and (4) our proposed approach soft-RFGB,
with various parameter settings. Table II presents the results.

We performed experiments with α = 0.5, 1, 2 and β =
−2,−4,−8,−10. The choice of α > 0 reflects a harsher
penalty for false negatives, while β < 0 reflects higher
tolerance to false positives. To assign a classification threshold
for the false negative rate and F5 measure, we used the fraction
#positive/#(positive + negative) for the Cora, Heart, and
IMDB datasets. However, for the WebKB and UW data sets,
the data is so skewed that this fraction is extremely small which
results in classifying every example as positive. To alleviate
this, we randomly subsampled the negative examples during
testing so that the pos/neg ratio is 1 : 10 and used the fraction
1/11 to calculate the false negative rate and F5 measure.

We performed four- or five-fold cross validation on each
dataset and averaged the evaluation measures discussed above.
Using these results, we study the following key questions:
Q1: How does soft-RFGB perform compared to MLN boost?
Q2: How does soft-RFGB perform compared to a single tree?
Q3: How does soft-RFGB perform compared to RFGB ?
Q4: How sensitive is soft-RFGB to the parameter values?



TABLE II: Experimental results.

MLN NB HM α = 0.5 α = 1 α = 2
-2 -4 -8 -10 -2 -4 -8 -10 -2 -4 -8 -10

Cora
WAUC 0.233 0.709 0.723 0.739 0.695 0.703 0.703 0.715 0.709 0.707 0.692 0.715 0.696 0.712 0.712
FNR 0.151 0.136 0.14 0.131 0.072 0.006 0.011 0.131 0 0 0 0.131 0 0 0
WF 0.832 0.867 0.864 0.872 0.909 0.969 0.965 0.872 0.974 0.974 0.974 0.872 0.974 0.974 0.974

IMDB
WAUC 0.205 0.361 0.361 0.39 0.364 0.383 0.366 0.391 0.393 0.393 0.365 0.368 0.39 0.395 0.383
FNR 0.626 0.663 0.481 0.129 0.118 0.118 0.118 0.118 0.118 0 0 0.129 0 0 0
WF 0.367 0.317 0.494 0.823 0.834 0.834 0.834 0.834 0.834 0.938 0.938 0.823 0.938 0.938 0.938

Heart
WAUC 0.026 0.302 0.295 0.305 0.327 0.34 0.351 0.278 0.295 0.345 0.353 0.281 0.309 0.353 0.345
FNR 0.386 0.641 0.354 0.024 0.005 0.005 0 0.02 0.005 0 0 0.01 0 0 0
WF 0.569 0.351 0.622 0.894 0.908 0.909 0.91 0.896 0.906 0.91 0.91 0.904 0.91 0.91 0.91

UW
WAUC 0.044 0.765 0.886 0.884 0.907 0.888 0.913 0.89 0.9 0.914 0.858 0.91 0.885 0.892 0.892
FNR 0.047 0.113 0.006 0 0 0 0 0 0 0 0 0 0 0 0
WF 0.701 0.877 0.95 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733

WebKB
WAUC 0.004 0.484 0.489 0.425 0.47 0.477 0.457 0.453 0.441 0.447 0.494 0.44 0.473 0.462 0.466
FNR 0.43 0.612 0.501 0 0 0 0 0 0 0 0 0 0 0 0
WF 0.429 0.378 0.451 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742

First we compare soft-RFGB to boosting MLN (column 3
in Table II) for Q1. For all domains, there exists a parameter
choice of α and β that significantly decreases the false negative
rate; this is especially so for WebKB and UW data sets, where
the false negative rate of soft-RFGB reaches zero. Hence, soft-
RFGB significantly improves the false negative rate for nearly
all values of β. For all domains, soft-RFGB improves on both
the weighted AUC-ROC and the F5 measure for all studied
values of α and β. Thus, Q1 can be answered affirmatively.

To study Q2 and Q3, we turn our attention to the single
relational tree (column 4 in Table II) and standard RFGB
(column 5). In each domain, soft-RFGB significantly decreases
the false negative rate. In all domains except UW, soft-RFGB
improves the F5 measure. This is because our parameter
settings for soft-RFGB sacrifice some precision to achieve
higher recall; for UW, standard-RFGB already achieves the
highest possible recall (=1) and soft-RFGB does not have any
room to improve recall, though it sacrifices precision, causing
F5 to decrease. Weighted AUC-ROC for soft-RFGB is similar
or better than that for RFGB in all domains. Since our goal is
to decrease the false negative rate without hurting the overall
performance, the results on weighted AUC-ROC strongly
suggest that soft-RFGB can achieve better performance than
standard RFGB in high recall regions.

Finally, we see that Q4 is answered affirmatively: within
a reasonably large range of α and β, our algorithm is not
sensitive in most domains. For example, α > 1 and β < −2
produces consistently good performance. This is a major
advantage of our cost-sensitive approach over commonly-
used tree-regularization approaches, which tend to be highly
sensitive to the choice of tree size, or the number of trees.
In addition, our parameters α and β have a nice intuitive
interpretation: they reflect and incorporate the high costs
of misclassifying certain types of examples for real-world
domains where this is an important practical consideration.

It is worth noting that although Table II seems to show that
the soft-margin performs uniformly better with larger α and
β values, this is not always the case. Performance begins to
degrade at some point; for example, with α = 100, β = −100,
weighted-AUC is only 0.4187 in WebKB domain, compared
to 0.4892 for standard RFGB, and 0.5011 for soft-RFGB with
the optimal settings of α and β. We observe similar results

in all the domains. The point at which performance begins to
decline is problem-dependent and worthy of future study.

Fig. 1 (b) and (c) show sample learning curves of soft-
RFGB, standard RFGB, and a single relational tree, in two
domains: Heart Disease and WebKB. We varied the num-
ber of training examples and averaged the results over four
different runs. Soft-RFGB significantly outperforms the other
two algorithms for all the conditions, especially when the
number of training examples is small, which signifies that soft-
RFGB can efficiently decrease the false negative rate simply
via appropriate parameter settings. It can be seen that the two
other methods suffer from higher variance than soft-RFGB.

We also performed experiments to evaluate our initial claim
that subsampling negative examples to achieve better recall
on imbalanced datasets runs the risk of increasing variance
of the estimator. Here, we used a re-sampling strategy that
sub-sampled the negative examples to match the positive
examples (1:1 ratio) during learning. For example, on WebKB,
re-sampling using RFGB achieved weighted-AUC of 0.41
compared to 0.48 for RFGB without re-sampling and 0.50
for our new method; re-sampling 0.43, RFGB 0.45 and our
new method 0.74 for F5 measure. We observed similar results
in the other domains. The key issue with re-sampling is that
sub-sampling negatives may lose important examples, which
leads to large variance particularly on highly skewed datasets.
To round off the analysis, we also performed over-sampling
of positive examples on the heart dataset such that the number
of positive and negative examples are equal. The weighted
AUC was 0.27 and F5 was 0.82 when using RFGB with the
over-sampled positive examples. To put this in perspective, our
algorithm achieved 0.35 AUC and 0.91 F5 scores. In summary,
it can be concluded that soft-RFGB faithfully addresses the
class imbalance problem in relational data when compared to
any under or over-sampling strategies.

V. CONCLUSION

We considered the problem of class imbalance when learn-
ing relational models and adapted the recently successfully
relational functional-gradient boosting algorithms for handling
this problem. We introduced a soft margin approach that
allowed for the false positives and false negatives to be consid-
ered differently. We then derived the gradients (residues) for



1: function GENSOFTMEGS(Data, F )
2: S := ∅
3: for 1 ≤ i ≤ N do
4: pi = P (yi = 1|xi) = sigmoid(F (yi;xi))
5: if ŷi = 1 then
6: λ = 1/(pi + (1− pi) · eα)
7: else
8: λ = 1/(pi + (1− pi) · e−β)
9: end if

10: ∆(yi;xi) := I(yi = 1)− λP (yi = 1|xi)
11: S := S ∪ [(yi),∆(yi; ;xi))]
12: end for
13: return S . Return regression examples
14: end function

Fig. 1: (a) Function for Generating Examples. (b)Sample learning curve: Heart dataset (c)Sample learning curve: WebKB,
Error bars indicate standard errors.

each example using this newly defined optimization function
and adapted the original algorithm for learning using these
residues. We showed empirically that soft-RFGB minimizes
the false negative rate without sacrificing over all efficiency.

This work can be extended in a few interesting directions:
first is to understand theoretically the implications of such an
approach. While it can be shown that the new optimization
function is convex in terms of the original parameter space
(the probability distributions), its nature in the functional space
is not clear. Understanding this implication is essential to
broadly apply this algorithm to several tasks. Second, applying
this algorithm to learning more complex models (such as
RDNs and MLNs) can lead to interesting insights on the
resulting networks. Scaling this algorithm to large relational
data such as EHRs where RFGB has been applied earlier is
essential. Finally, applying and learning using this approach to
label examples in active learning or allow for some unlabeled
examples as in semi-supervised learning are interesting and
high-impact future research directions.
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